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In order to make a wind power generation truly cost-effective and reliable, an advanced control 
techniques must be used. In this paper, we develop a new control strategy, using nonlinear 
model predictive control (NMPC) approach, for DFIG-based wind turbine. The DFIG is fed 
through the rotor windings by a back-to-back converter controlled by Pulse Width Modulation 
(PWM), where the stator winding is directly connected to the grid. The proposed control law is 
based on two points: NMPC-based torque-current control loop generating the rotor reference 
voltage and NMPC-based speed control loop that provides the torque reference. Finally, a real-
time simulation is carried out to illustrate the performance of the proposed controller.   

Keywords: Nonlinear model predictive control, DFIG-based wind turbine, real-time 
simulation. 

 
1.  Introduction  

 
Recently, many new wind farms have employed wind turbines based on doubly-fed 

induction generator (DFIG) [1]. Due to their full power control capability, variable speed 
operation, low converter cost and reduced power loss [2-3]. However, DFIG constitutes a 
challenging control problem, because of its fast dynamics, and being highly coupled and 
nonlinear multi-variable system.  

The Field-oriented vector control using cascaded PI controllers is widely used, in DFIG-
based wind turbines, for reasons of simplicity and applicability [4]. However, PI-type 
control methods are not effective when the system to be controlled is characterized by 
strong nonlinearity and external disturbances. To overcome these drawbacks, various 
approaches have been proposed to replace PI-type controllers. Some examples are the H∞ 
control theory, neural networks and sliding mode control [5-7]. 

On the other hand, nonlinear model predictive control (NMPC) refers to a class of 
computer control algorithms that utilize an explicit process model to predict the future 
response of a plant. Due to its good robustness for external disturbances and varying 
parameters, it has received a great deal of attention and is considered by many to be one of 
the most promising methods in control engineering [8-9]. 

In this paper, a nonlinear model predictive control (NMPC) is applied to a wind energy 
conversion system based on Doubly-fed Induction Generator (DFIG). The control law is 
derived by optimization of an objective function that considers the control effort and the 
difference between the predicted outputs and their references. The Taylor series expansion 
is used to approximate the predicted outputs in a finite horizon. 
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The rest of the paper is organized as follows: In section 3, the dynamic model of wind 
energy conversion system is exposed. In section 4, mathematical formulation of NMPC for 
nonlinear system is presented. The control system is developed is section 5. The real time 
simulation results are given in sections 6. Finally, Section 7 concludes the paper.  

 
2. Notation   

 
Pt                  Aerodynamic power (W)   
ρa  , v            Air density kg m3, wind speed 
R                  Rotor turbine radius (m)  
Cp     , Cp-max     Power coefficient,  Maximal power coefficient                     
β                   Blades pitch angle 
λ , λopt           Tip-speed ratio , Optimal  tip-speed ratio 
Tt   , Tr                Aerodynamic torque (N.M), Generator torque (N.m)                      
Ωt    , Ωr  , Ωr-ref      Turbine speed , Generator speed, Reference generator speed(rad/s) 
 G                  Gear ratio                      
Pgrid -ref               Reference grid active power (W) 
η                   System (wind turbine + DFIG) efficiency.   
Ps, Qs           Active and reactive stator power (W,var) 
Pr, Qr           Active and reactive rotor power (W,var) 
Pf, Qf         Active and reactive power exchanged between the filter and the grid (W,var) 
Tem               Electromagnetic torque (N.m) 
Vdr, Vqr         Two-phase rotor voltages (v) 
V                  Stator voltages (v) 
Idr, Iqr           Two-phase rotor current (A)   
Rr ,  Lr                  Per-phase rotor  resistance and  self inductance 
M, P            Mutual inductance, Number of pole pairs 
J,  fr                  Moment of inertia , coefficient of friction.  
ωs, ωr           Stator and rotor angular velocities rd/s   
s, σ              Generator slip and  Dispersion ratio 
x , u , Tr       State vector , Control output, Disturbance 

       Finite horizon cost function  
Tp  , ρi         Predictive time, Relative degree of the output i  

hL i
k
f          The kth order Lie derivative of hi 

Rf   Xf          Filter resistance and reactance  
PI              Proportional, integral 
MPPT       Maximum power point tracking 
GST , RST    Grid side converter, Rotor side converter 
PWM      Pulse Width Modulation  
WECS       wind energy conversion system  
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3. Modeling of the wind generation system  
 
The system considered in this work is shown in Figure 1. The wind turbine is coupled to 

the DFIG rotor shaft through a gearbox. The stator windings of DFIGs are directly 
connected to the grid, and rotor windings are connected to the grid through back-to-back 
power electronic converters. Between the two converters a dc-link capacitor is placed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 1: System configuration 

 
 

3.1    Modeling of the Wind Turbine  

 

The aerodynamic power extracted from the wind can be expressed as    

3),( vCπRρ
2

1
P p

2
at βλ=                                                              (1) 

The coefficient Cp is specific for each wind turbine. The tip speed ratio is defined as 
 

  
ν

RΩ
λ t=                                                                                       (2) 

A typical relationship between   Cp   and  λ  is shown in Figure 2.  At the point   λopt ,  
 Cp =Cp-max ,  the maximum power can be extracted. To this end, the turbine should always 
operate at λopt. 
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Fig 2: Typical power coefficient. 

Neglecting the transmission losses, the torque and speed of the wind turbine, referred to the 
generator side of the gearbox, are given by 

G

T
T t

r =     ,     
G

Ω
Ω r

t =                                                            (3) 

 
Substituting equation (3) in equations (1) and (2), the rotor speed and active grid power 
references are given by 

⎪
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                                                  (4) 

 
3.2 DFIG model 

 
By choosing a d-q reference frame synchronized with the stator flux, by setting the 

quadratic component of the stator flux to the null value and by neglecting the stator 
resistance, the   electrical equation of the DFIG is written as follows [10-11]  

 

⎪
⎪
⎩
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qr
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drsqr
qr

dr
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qrsdr
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LσL
sMV

sIsωI
rσL
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V
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IsωI
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R
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dI

                      (5) 

The electrical model is completed by the mechanical equation given below  

Tip speed ratio 

Pow
er coefficient C

p   

Cp 



www.manaraa.com

J. Electrical Systems 9-2 (2013): 243-255 
 

247 

 

 rrremr ΩfTTΩ
dt

d
J −−=                                                                (6) 

The electromagnetic torque generated by the DFIG is given by  

qr
ss

s
em I

Lω

MV
PT =                                                                         (7) 

The active and reactive powers exchanged between the stator and the grid can be expressed 
as follows 

⎪
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                                                              (8) 

with:              
sr LL

M
1σ −=  ;     

s

rss
ω

ω−ω
=  

 
4. Mathematical formulation of NMPC 

 
The nonlinear model predictive control proposed by Chen et al. [12] is briefly described 

in this section. The NMPC structure is shown in figure 3. 
 
 
 
 

 

 

 

Fig 3:  NMPC Structure 

We consider a nonlinear system of the form 
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The function f(x) and h(x) are assumed to be continuously differentiable a sufficient number 
of times. Vector function gu(x) and gT(x) are continuous functions of x. The problem 
consists in elaborating a control law u (t) such that the output y (t+τ) can optimally track a 
desired reference yr (t+τ) in presence of the disturbance Tr. The predictive control will be 
optimal if the finite horizon cost function ℑ is minimized 

τ)]dτ(tyrτ)[y(tτ)](tyrτ)[y(t
2
1 Tp

0

T +−+∫ +−+=ℑ                      (10) 

To solve the nonlinear optimization problem (10), the predicted output y (t+τ) and the 
predicted reference yr (t+τ) are approximated by Taylor series expansion  
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The Lie derivative of function hi(x) along a vector field f(x) = (f1(x)…….. fn(x)) is denoted 
by    
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                                                 (12) 

The necessary condition for the optimal control is given by    

      0=
ℑ

du

d
                                                                       (13) 

5. The control system 
 
The rotor speed is controlled by the rotor side converter (RSC), while the power flow is 

controlled by the grid side converter (GSC). 
 

5.1 Rotor side converter control 
 
As DFIG is characterized by two-time scales modes; i.e. electrical (fast) and mechanical 

(slow) modes, a cascaded structure is adopted for the design of the RST controller, see 
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Figure 4. The inner loop is used to regulate the d-axis rotor current and the electromagnetic 
torque. The outer loop is employed for the speed trajectory tracking.  

 

 

 

 

 

 

 

 

 

Fig 4: Block Diagram of the proposed NMPC applied to the RSC  
 

5.1.1 Inner control loop 
 

In the internal loop, the predictive control is applied to the electrical equations in order 
to provide the components of the armature rotor voltage (Vd-ref, Vqd-ref). From (5), it follows 
that the electrical equations can be expressed as 

 

      
⎩
⎨
⎧

=
+=

)(
)()()()(

xhy
tuxgxftx u&

                                                                        (14) 

With:  

           T
qrdr I   Ix )(=   ;   T

refqrrefdr VVu    )( −−=   ; T
drem ITy    )(=     

 
The state vector x is composed of the d-axis and q-axis component of the armature rotor 
currents. The input vector u is made of the d-axis and q-axis components of the armature 
rotor voltage. The output vector y consists of the electromagnetic torque and the d-axis 
rotor current, while vector function f(x) and gu(x) are defined as  
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The outputs to be controlled in the inner loop are defined as follows 
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For the outputs y1 and y2, their relative degrees ρ1 and ρ2 are equal to 1. The resulting NMPC 
applied to the system (14) is given by    
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The d-axis rotor current reference is calculated to maintain at null value the stator 

reactive power flow to the grid.  
 

5.1.2       Outer control loop 

The speed controller in the outer loop is obtained by considering the mechanical 
dynamics of the DFIG. From equation 8, it follows that the mechanical equation can be 
expressed as 
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Where x and u are, respectively, the rotor speed Ωr and the electromagnetic torque Tem. Tr is  
the aerodynamic torque and the output y is the rotor speed. The vector function f(x), gu(x) 
and gT(x) are given by   
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The relative degree ρ of the output y is equal to 1. Then, we shall have the optimal control 
input as     

           ⎥⎦
⎤

⎢⎣
⎡ +∑ −−−=

=
(t)r(x)TTG(t))[i]

ryh(x)i
f(Lik1xGtu

1

0i
u )()(                    (18) 



www.manaraa.com

J. Electrical Systems 9-2 (2013): 243-255 
 

251 

 

with:            
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The rotor speed reference is given in the equation 4. In order to limit the control effort, the 
reference speed signal is passed through a second order linear filter given by  
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where    wn =5    ζ=1.2 
 

5.2 Grid side converter control 

The GSC is connected to the electrical grid by an intermediary line characterized by a 
resistance Rf  and a reactance Xf  as shown in Figure 5.  

In a d-q reference frame related to the network angular speed ωs equal to the synchronous 
speed, the electrical voltage equation is given by  
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The output vector y consists of the active and reactive power transferred to the grid by the 
GSC, while vector function f(x) and gu(x) are defined as  
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The outputs to be controlled are defined as follows 
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Fig 5: Block Diagram of the proposed NMPC applied to the GSC  
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6. Real time simulation results 

To evaluate the proposed controller performance, the drive system given in figures 4 
and 5 are implemented first in Matlab/Simulink in block diagram format. This Simulink 
model is then opened and compiled with RT-Lab software package. The predictive time are 
set to: Tp1=0.5ms, Tp2 = 2ms and Tp3=1ms.  

 
6.1 Tracking performance 

In this simulation, the robustness of the proposed control law, against the aerodynamic 
torque variations, is tested. The wind speed profile used in the simulation is illustrated in 
figure 6.  Results of simulation show good tracking capability of the proposed controller. 
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The speed and electromagnetic torque tracking performances are satisfactory achieved as 
shown  in figures 7 and 8. The stator and rotor active power transited to the grid are plotted 
in figure 10. We notice that the sense of drainage depends on the sign of the DFIG slip 
(figure 9). As shown in figure 11, the grid active power tracks perfectly its reference aiming 
to maximize the conversion efficiency. The rotor and stator reactive powers are shown 
respectively in figures 12 and 13. The grid reactive power is maintained at zero value 
contributing to compensate the grid power factor (figure14). The rotor voltage and current 
at sub-synchronous, synchronous and hyper-synchronous modes are plotted in figure 15.  
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Fig 6: Wind speed profile 
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 Fig 7: Rotor speed  
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     Fig 8: Electromagnetic torque 
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             Fig 9: DFIG slip  
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       Fig 10: Stator and rotor active power 
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Fig 11: Grid active power 
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      Fig 12: Rotor reactive powers 
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           Fig 13: Stator reactive powers. 
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Fig 14: Grid reactive powers  
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           Fig 15: Rotor voltage and current 

 

 
   6.2 Tracking performance under DFIG’s parameter variations 

      As NMPC is a model-based approach, the accuracy of the DFIG parameters may 
influence the drive. The parameter variations introduced in the DFIG model are set to the 
following values: 25 % in the rotor resistance at t=4s and 10% in the coefficient of friction 
at t=16s. These variations are not taken into account in the controller. From Figures 16 and 
17, we notice that the systems response convergence to the reference values despite DFIG’s 
parameter variation.  Indeed, the grid active power and rotor speed track perfectly their 
references. 
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        Fig 16: Speed trajectory tracking 
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Fig 17: Grid active power under DFIG’s 

parameter variations. 

 
7. Conclusion 

 
  In this paper, a NMPC strategy has been proposed for  the wind energy conversion 

system (WECS) based on the DFIG. Simulation results have proven that the proposed 
controller is able to offer convergence of the system response despite wind speed variations 
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and DFIG’s parameter variations.  Indeed, the control strategy achieved a good reference 
tracking and stability for the rotor speed and electromagnetic torque for the steady state and 
transient responses of the DFIG.  The NMPC strategy is a good candidate for controlling 
the WECS based on a DFIG interconnected to the grid. 
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Appendix  
 

1) DFIG:    1.5Mw,  690V, 50Hz, P=2, 
                     Ls=Lr= 0.0137 H,     M=0.0135 H,   Rs= 0.012 Ω, 
                    Rr = 0.021 Ω ,   P=2   ,  fr= 0.0071, J= 500 Kg.m2 

2) Wind turbine:    Turbine diameter=60m, number of blades=3, hub height=85m, 
R=36.5m    gearbox =90. 
3) Filter parameters:    Rf= 1Ω   Lf =30Mh 
4) Dc-link capacitor:   C=500µF , Vdc=400v 
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